268 Short Reports

 $1 R^1 = R^2 = H$

2 $R^1 = R^2 = Ang$

 $3 R^1 = pNO_2B_2, R^2 = OH$

 $4 R^1 = R^2 = pNO_2Bz$

5 $R^1 = pNO_2Bz$, $R^2 = Sen$

6 $R^1 = OH, R^2 = Sen$

 $7 R^1 = Ang, R^2 = Sen$

Ang =
$$\left(\begin{array}{c} 0 \\ 2 \\ 3 \end{array}\right)^4$$
 (angeloyl)

Sen =
$$\left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right)^4$$
 (senecioyl)

(4.40), 248 (3.87); IR $v_{\rm max}^{\rm CHC_3}$ cm $^{-1}$: 1711 and 1653 (C=C-C=O, esters), 1672 and 1617 (C=C-C=O, ketone); 1 H NMR (300 MHz) and 13 C NMR (75.4 MHz): Tables 1 and 2 respectively.

Acknowledgements—We are grateful to Dr Jerzy Rzedowski for identifying the plant material, and to CoNaCyT and SEP-México for the financial support.

REFERENCES

- Gil, R. R., Oberti, J. C., Sosa. V. E. and Herz, W. (1987) *Phytochemistry* 26, 1459.
- Amaro, J. M., Adrián, M., Cerda, C. M. and Joseph-Nathan, P. (1988) Phytochemistry 27, 1409.
- 3. Bohlmann, F., Ates. N., Jakupovic, J., King, R. M. and Robinson, H. (1982) *Phytochemistry* 21, 2691.
- Bohlmann, F., Suwita, A., Natu, A. A., Czerson, H. and Suwita, A. (1977) Chem. Ber. 110, 3572.
- Román, L. U., del Río, R. E., Hernández, J. D., Cerda, C. M., Cervantes, D., Castañeda, R. and Joseph-Nathan, P. (1985) J. Org. Chem. 50, 3965.
- 6. Bohlmann, F. and Zdero, C. (1985) Liebigs Ann. Chem. 1764.
- 7. Nayak, U. R. and Dev, S. (1968) Tetrahedron 24, 4099.
- 8. Beeby, P. J. (1977) Tetrahedron Letters 3379.
- Kindt-Larsen, T., Bitsch, V., Andersen, I. G. K., Jart, A. and Munch-Petersen, J. (1963) Acta Chem. Scand. 17, 1426.
- 10. Bohlmann, F., and Tietze, B. M. (1970) Chem. Ber. 103, 561.
- Joseph-Nathan, P., Cerda, C. M., del Río, R. E., Román, L. U. and Hernández, J. D. (1986) J. Nat. Prod. 49, 1053.

Phytochemistry, Vol. 28, No. 1, pp. 268-271, 1989. Printed in Great Britain.

0031 9422/89 \$3.00 ± 0.00 © 1988 Pergamon Press plc.

SESQUITERPENE LACTONES FROM PYRETHRUM SANTOLINOIDES

M. ABDEL-MOGIB, J. JAKUPOVIC, E. M. DAWIDAR,* M. E. METWALLY* and M. ABOU-ELZAHAB*

Institute of Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F.R.G.; *Department of Chemistry, University of Mansoura, Mansoura, Egypt

(Received in revised form 29 June 1988)

Key Word Index—*Pyrethrum santolinoides*; Compositae; sesquiterpene lactones; germacranolides; heliangolides; eudesmanolide.

Abstract—A reinvestigation of the aerial parts of *Pyrethrum santolinoides* afforded, in addition to known compounds, four new sesquiterpene lactones, three germacranolides and an eudesmanolide. The structures were elucidated by high field ¹H NMR techniques.

INTRODUCTION

Pyrethrum santolinoides DC (= Tanacetum sinaicum Del. ex DC) has been studied previously. From the aerial parts

some sesquiterpene lactones were reported [1] and from the roots various compounds, including unusual triterpenes, were isolated [2]. We have studied a sample of the aerial parts collected at Wadi Elarbaeen, Sanct Kathe-

rine, Sinai peninsula and the results are discussed in this paper.

RESULTS AND DISCUSSION

The extract of the aerial parts afforded, in addition to some widespread compounds (see Experimental), the germacranolide 1, which has been isolated previously from the species [1], and three further ones, the epimeric diol 2, the Δ^9 -isomer 3 and the corresponding epoxide 4. Furthermore the eudesmanolide 5 was present.

The structure of compound 2 followed from its ¹H NMR spectrum (Table 1) which was in part similar to that of 1. However, several signals were shifted and also

Table 1. 1 H NMR spectral data of compounds 2–5 (400 MHz, CDCl₃, δ -values)

H	2	3	4	5
1	4.10 br ddd	5.03 dd	3.92 dd	3.73 br dd
2α	2.34 ddd	1.92 ddd	2.16 m	1.82 ddd
2β	2.28 ddd	2.16 ddd	2.25 m	2.44 ddd
3	4.46 br dd	4.48 dd	4.48 br s	3.15 br dd
5	5.24 dq	5.09 br d	5.18 br d	1.83 d
6	5.88 dd	5.94 dd	5.94 dd	3.98 dd
7	1.81 m	1.47 dddd	1.75 br ddd	1.60 m
Bα	1.76 m	2.22 m	2.36 br d	1.75 m
ßβ	2.08 m	2.45 ddd	1.50 ddd	1.27 m
θα	2.23 br dd	5 22 44	2.83 dd	1.08 ddd
9β	2.62 br dd	5.23 ddq		2.26 m
11	2.35 m	2.24 m	2.31 dq	2.26 m
13	1.24 d	1.22 d	1.26 d	1.23 d
14	5.32 br s	1.68 dd	1.24 s	0.97 s
	5.13 br s	1.00 aa		
15	1.78 d	1.67 d	1.80 br s	1.43 s

J[Hz]: compound 2: 1,2α = 4; 1,2β = 10; 2α,2β = 16; 2α,3 = 5; 2β,3 = 4; 3, OH = 6; 5,6 = 6,7 = 10; 5,15 = 1.5; 8β,9 = 10; 8α,9α = 8; 9α,9β = 15; 11,13 = 7; compound 3: 1,2β = 11.5; 1,2α = 2; 2α,2β = 14.5; 2β,3 = 2.5; 2α,3 = 5; 5,6 = 6,7 = 10; 5,15 = 1.5; 7,8β = 8β,9 = 11; 7,8α = 2; 7,11 = 12; 8α,8β = 13.5; 8α,9 = 6; 8β,14 = 9,14 = 1; 11,13 = 7; compound 4: 1,2β = 10.5; 1,2α = 2.5; 5,6 = 6,7 = 10; 7,8β = 8β,9 = 11; 7,11 = 12; 8α,8β = 14.5; 8α,9 = 3; 11,13 = 7; compound 5: 1,2β = 6; 1,2α = 10; 2α,2β = 15; 2β,3 = 1.5; 2α,3 = 2; 5,6 = 6,7 = 10; 8α,9β = 4; 8β,9β = 9α,9β = 13.5; 11,13 = 7.

270 Short Reports

some of the couplings differed. Spin decoupling indicated that only the configuration at C-1 was changed in the lactone. In agreement with the down field shift of H-14 the lactone 2 had a 1β -hydroxy group.

The molecular formula of compound 3 (C₁₅H₂₂O₄) showed that we were dealing with an isomer of compounds 1 and 2. The ¹H NMR spectrum (Table 1) indicated that the exomethylene group was replaced by an olefinic methyl group. Accordingly, two signals (δ 1.68 dd and 1.67 d) for olefinic methyls were visible and in addition to a broadened doublet at δ 5.09 (5-H) a further low field signal (δ 5.23 ddq) was present. Spin decoupling allowed the assignment of all signals, only those of H-8x and H-11 being overlapped. The configuration at C-11 could not be deduced directly from the ¹H NMR spectrum and the preferred conformation had to be determined for a clear assignment of the configurations. This was achieved by NOE difference spectroscopy. The observed effects required the proposed configurations and a conformation with both methyls below the plane but not perpendicular (Table 2). The NOE's between H-15 and H-5 as well as between H-9 and H-14 established the presence of a heliangolide with a Δ^9 -Z-configuration for the double bond. This germacranolide type is relatively rare, for example some exomethylene lactones with 8β acyloxy groups of this type have been reported from Eupatorium species [3].

In the ¹H NMR spectrum of 4 (Table 1) one of the olefinic proton signals was replaced by a double doublet at δ 2.83. As followed from spin decoupling this signal was due to H-9. The chemical shift required the presence of a proton at an epoxide carbon. Thus, this lactone was the epoxide of 3. This was established by determining the stereochemistry by the NOE which requires a conformation as in the case of 3 with a β -epoxide moiety. Inspection of models clearly showed that an α -epoxide can not have a conformation which would agree with the observed NOE's and couplings. Compounds 1-4 are probably all derived from a 3β -hydroxyheliangolide with a 1(10)-double bond by attack of oxygen accompanied by allylic rearrangement and epoxidation in the case of 4.

The ¹H NMR spectral data of 5 (Table 1) indicated that an eudesmanolide was present. The signals were in part similar to those of reynosin. However, the exomethylene proton signals were replaced by a sharp singlet at δ 1.43. Accordingly, a tertiary methyl carbinol was very likely. A double doublet at $\delta 3.15$ indicated a further hydroxy group and a methyl doublet at δ 1.23 agreed with the presence of a 11,13-dihydro lactone. Spin decoupling showed that the signal of the corresponding vicinal proton (H-11) was overlapped by a multiplet. Therefore, no clear coupling with H-7 could be recognized. However, NOE difference spectroscopy allowed the assignment of the stereochemistry at C-11 and also at all other chiral centres. A clear effect between H-1, H-6 and H-8 β as well as a NOE of H-14 with H-5 required the presence of a cis-decalin system (Table 2). Most likely the lactone 5 is formed by cyclization of 3 as shown in Scheme 1. Inspection of a model of 3 shows that in the preferred conformation it would lead to a cis-decalin system with a stereochemistry as observed for lactone 5.

EXPERIMENTAL

The air-dried plant material (640 g) was extracted with Et₂O-MeOH-petrol (1:1:1) for 24 hr at room temp. After defatting with MeOH the extract was separated first by CC (silica gel) as reported previously [4] into three fractions (Fr. 1: Et₂O-petrol, 1:9 and 1:3; Fr. 2: Et₂O-petrol, 1:1 and Fr. 3: Et₂O and Et₂O-MeOH, 9:1). TLC of fraction 1 gave 50 mg thymol, of fraction 2 gave 5 mg thymol, 15 mg p-methoxyacetophenone and 23 mg stigmasterol. TLC of one-sixth of fraction 3 (Et₂O-MeOH, 99:1) gave two bands (Fr. 3/1 and Fr. 3/2). TLC and HPLC of Fr. 3/1 (MeOH-H₂O, 7:3, always RP 18, flow rate 3 ml/min) gave 3 mg 5 (R_t 4.8 min). HPLC of Fr. 3/2 $(MeOH-H_2O, 3:1)$ gave 3 mg 4 $(R_t 1.0 min)$, 2.5 mg 2 $(R_t 1.4 \text{ min})$, 3 mg 1 $(R_t 2.1 \text{ min})$ and 7 mg 3 $(R_t 2.9 \text{ min})$. Known compounds were identified by comparing the 400 MHz ¹H NMR spectra with those of authentic material.

1α,3β-Dihydroxy-7α,11βH-germacra-4Z,10(14)-dien-12,6α-olide (2). Colourless gum; IR $v_{\text{max}}^{\text{CHCI}_3}$ cm⁻¹: 3600 (OH), 1770 (y-lactone); CIMS m/z (rel. int.): 267 [M+1]⁺ (92) (C₁₅H₂₂O₄+1), 249 [267 -H₂O]⁺ (100), 231 [249-H₂O]⁺ (48); $[x]_0^{24}$ +46° (CHCl₃; c 0.18).

 $1\alpha,3\beta$ -Dihydroxy- $7\alpha,11\beta$ H-germacra-4Z,9Z-dien- $12,6\alpha$ -olide (3). Colourless crystals, mp. 163°; IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3600 (OH), 1770 (y-lactone); MS m/z (rel. int.): 266.152 [M]⁺ (14) (calc. for $C_{15}H_{22}O_4$: 266.152), 248 [M – H_2O] + (14), 233 [248 – Me] + (9), 222 [M – CO_2] + (12), 100 (100); [α]_D^{24*} + 154° (CHCl₃; c 0.13).

Irradiated	3	4	5
H-1	Η-6 Η-8β	Н-6 Н-8β	Η-6 Η-8β
	(3) (4)	(3) (3)	(10) (5)
H-3	H-2α H-2β H-15	H-2 α H-2 β H-15	H-2 α H-2 β H-15
	(5) (3) (5)	(6) (6) (5)	(3) (6) (14)
H-5	H-15 H-7	H-7 H-15	H-14 H-15
	(5) (3)	(3) (4)	
H-6	H-1 H-8β H-11	H-1 H-8β H-11	H-1 H-11 H-8β
	(4) (2) (3)	(3) (2) (5)	(8) (7) (3)
H-9 (9')	H-14 H-7	H-7 H-14	H-14
	(5) (3)	(3) (2)	(4)
H-14	Η-9α	H-9 α H-15	H-2α H-5 H-9α H-15
	(10)	(10) (6)	(5) (10) (5) (2)
H-15	H-3 H-5	H-3 H-5 H-14	H-3 H-5 H-14
	(7) (9)	(5) (8) (4)	(7) (5) (2)

1α,3β-Dihydroxy-9β,10β-epoxy-7α,11βH-germacra-4Z-en-12,6α-olide (4). Colourless gum; IR $\nu_{max}^{\rm CHCl_3}$ cm $^{-1}$: 3600 (OH), 1770 (γ-lactone); MS m/z (rel. int.): 266.152 [M – H₂O]⁺ (1.5) (calc. for C₁₅H₂₂O₄; 266.152), 251 [266 – Me] ⁺ (6), 109 (70), 95 (97), 55 (100); [α]_D^{24*} + 34° (CHCl₃; c 0.21).

1α,3β,4β-Trihydroxy-(5α,7α,11βH-10α methyl)-eudesman-12,6α-olide (5). Colourless gum; IR $v_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$: 3600 (OH), 1770 (γ-lactone); MS m/z (rel. int.): 266.152 [M - H₂O] $^+$ (6) (calc. for C₁₅H₂₂O₄: 266.152), 251 [266 - Me] $^+$ (11), 248 [266 - H₂O] $^+$ (7), 233 [251 - H₂O] $^+$ (5), 192 (100); [α] $_2^{\rm D4}$ $^+$ 10° (CHCl₃; c 0.33).

REFERENCES

- El-Sebakhy, N. A., El-Ghazouly, M. G., Seif El-Din, A. A. and Zdero, C. (1986) Pharmazie 41, 525.
- Jakupovic, J., Eid, F., Bohlmann, F. and El-Dahmy, S. (1987) *Phytochemistry* 26, 1536.
- Herz, W., de Groote, R. and Murari, R. (1978) J. Org. Chem. 43, 3559.
- Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1979.

Phytochemistry, Vol. 28, No. 1, pp. 271-273, 1989. Printed in Great Britain.

0031-9422/89 \$3.00+0.00 © 1988 Pergamon Press plc.

ONOSERIOLIDE DERIVATIVES FROM LEUCERIA SPECIES

M. BITTNER, J. JAKUPOVIC, F. BOHLMANN and M. SILVA*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F. R. G.; *Universidad de Concepcion, Facultad de Ciencias Biologicas, Casilla 2407, Apartado 10, Concepcion, Chile

(Received 3 May 1988)

Key Word Index—Leuceria leontopodioides, L. purpurea, L. thermarum, L. hahnii; Compositae; sesquiterpene lactones; onoseriolides; acetylenic compounds.

Abstract—From Leuceria species in addition to known, widespread compounds, four new onoseriolide derivatives and a known tetraynene together with an isomeric derivative, were isolated. The structures were elucidated by high field NMR techniques. The chemotaxonomy is discussed briefly.

INTRODUCTION

The genus Leuceria has 46 species distributed from south Peru to Patagonia [1] but so far only one species has been studied chemically. In addition to the tetrayne derivative 6 the rare sesquiterpene lactone onoseriolide (4) and its Δ^8 -derivative were isolated [2]. We have studied four further species and the resuls are discussed in this paper.

RESULTS AND DISCUSSION

The aerial parts of *L. leontopodioides* (O. K.) Schum. afforded in addition to curcumene and tridecapentaynene, the onoseriolide derivatives 1–3 and 5, and the tetraynenes 6 [3] and 7. From the extract of *L. purpurea* (Vahl.) H. et A. also tridecapentaynene and the lactone 3 were isolated while the aerial parts of *L. thermarum* (Phil.) Phil. only gave triterpenes (see Experimental) and those of *L. hahnii* Franchet gave lupenone, tridecapentaynene and tetradeca-4,6-dien-8,10,12-triyn-1-ol.

The structures of 1 and 2 were deduced from the ¹H NMR spectra (Table 1) as they were similar to those of onoseriolide (4) and its 8,9-dihydro derivative [4, 5] respectively. However, the typical signals of senecioates and the down field shift of the H-13 signals indicated that the corresponding ester were present. The ¹H NMR

spectrum of 3 (Table 1) was similar to that of 2. However, the low field singlet at δ 6.43 was replaced by a singlet at δ 4.21. As followed from the molecular formula $(C_{20}H_{22}O_5)$ lactone 3 had one more oxygen. Accordingly, all data agreed with the presence of the epoxide of compound 2. This was supported by the ¹³C NMR data (Table 2) especially if compared with those of 1 and 2 (Table 2). The configuration at C-8 and C-9 could not be determined. However, biogenetic considerations strongly favour a β -epoxidation of the Δ 8-bond. The ¹H NMR spectrum of 5 (Table 1) was in part similar to that of compound 2. As already followed from the molecular

5

1 R = Sen, 2 R = Sen, Δ^{8} 3 R = Sen, 8β , 9β - epoxide 4 R = H

Me [C \equiv C]₄CH \equiv CHCH(OR¹)CH₂OR²

6 $R^1 = H$, $R^2 = iBu$ 7 $R^1 = iBu$, $R^2 = H$